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Rationale 

Automated driving system (ADS) developers need a way to describe safe and competent driving for 
automated driving system-dedicated vehicles (ADS-DVs) in a way that is relatable to how stakeholders 
interpret safe driving today. Metrics informed by competent and safe human behavior could improve 
understanding and confidence in ADS-DVs. One way to make ADS safety performance relatable to 
stakeholders is to adopt an intuitive comparison to behaviors displayed on the road by human drivers. 

It is important to acknowledge that not all aspects of human driving are socially acceptable. Therefore, 
the behaviors observed in naturalistic driving studies (NDS) are likely to include both desirable and 
undesirable qualities. Consequently, caution should be exercised when utilizing NDS data as one of 
several inputs to inform safety performance standards for ADS. To ensure safety, ADS developers are 
expected to incorporate various data sources, define parameter sets, and establish safety thresholds 
throughout the design, construction, verification, and validation (V&V) processes. This best practice 
should be viewed as an illustrative approach that can be further generalized and replicated for other data 
sources and datasets beyond those discussed in this best practice. 

 

 

 

 

 

 

 

SAE Industry Technologies Consortia™ provides that: “This AVSC best practice is published by the SAE ITC to advance the stage of 
technical and engineering sciences. The use of this best practice is entirely voluntary and its suitability for any particular use, including any 
patent infringement arising therefrom, is the sole responsibility of the user.” 
 
Copyright @ 2023 SAE ITC 
 
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE ITC. 

 



AVSC Best Practice for Developing ADS Safety Performance Thresholds Based on Human Driving Behavior   2 

Preface 

The Automated Vehicle Safety Consortium™ (AVSC) is an industry program of SAE Industry Technologies 
Consortia® (SAE ITC). The AVSC shares information to inform and accelerate industry-wide standards and advance 
the safe development, deployment, and fleet operations of automated driving systems (ADSs). The members of 
this consortium have decades of accumulated experience, including millions of cumulative miles of physical and 
simulated ADS testing focused on safer, reliable, high-quality transportation. They are committed to applying their 
experience and combined knowledge to earn public confidence in the safe operation of SAE level 4 and level 5 
automated vehicles.  

The wide range of technologies, use cases, and operating domains create unique challenges with public perception 
of ADSs. The consortium recognizes the beneficial role best practices and information reports can have for the 
industry and for the safe operation of SAE level 4 and level 5 automated driving system-dedicated vehicles 
(ADS-DVs). These technology-neutral documents provide key considerations for safely deploying ADS-DVs on 
public roads. AVSC documents are based on current state-of-the-art technology and the experiences of the AVSC 
members. AVSC members currently support, or intend to support, the best practices or equivalent measures to set 
a bar for other industry participants to meet.  

Technology advances rapidly, and new information is becoming available at an increasing rate. The AVSC’s best 
practices and information reports are living documents. As knowledge and experience grow, our publications will 
be revisited and updated, as needed, to continue to support the safer on-road use of ADS-DVs. Comments and 
open discussion on the topics are welcome in appropriate industry forums. 

Introduction 

Historically, safety performance measures have played a vital role in evaluating the state and progress of road 
traffic safety. In the United States, the National Highway Traffic Safety Administration (NHTSA) has been 
responsible for reporting road traffic safety statistics and conducting analyses using data from on-road vehicles; to 
date, mostly consisting of human drivers. These measures serve as important indicators that inform Congress, the 
general public, and other relevant parties (e.g., regulatory agencies) about the status of road safety [1]. These traffic 
safety performance measures provide a good and relatable reference point for understanding traffic safety changes 
year over year. 

NHTSA’s databases have traditionally focused on lagging indicators of safety (i.e., collision statistical analysis). 
This best practice aims at providing a complementary approach to inform safety by focusing specifically on leading 
behavioral evaluation [2] [3]. The approach proposed here involves comparing the on-road driving behavior of ADSs 
to that of human drivers, aiming to gain a deeper understanding of ADS behavior and its implications. The 
assessment centers on the predictability and similarity of ADS behavior relative to observed human driving behavior. 
By adopting this approach, a more comprehensive evaluation of the performance of ADS fleets can be achieved. 
This empowers developers to identify areas for improvement and potentially unknown unsafe behaviors. 

Reference points for assessing the relative safety performance of ADS fleets are crucial. The safety performance 
of some ADS behaviors can then be measured and compared to NDS data from human drivers to help characterize 
the socially acceptable balance between safety, lawful driving, efficiency, and comfort. For instance, developers 
can utilize human-driver data to determine an appropriate minimum passing distance when vulnerable road users 
(VRUs) are present. This process enables them to enhance the safety performance of ADS fleets by aligning with 
human-relative benchmarks and considerations.  
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The recommended set of safety performance metrics from AVSC00006202103 and the behavioral competencies 
from AVSC00008202111 provide a starting point for assessing ADS behavior in a specific operational design 
domain (ODD). This best practice builds upon those previous efforts by providing ADS developers with a third 
component for safety assurance by identifying:  

• The specific behavioral competency of interest for evaluation. 

• The applicable safety performance metrics. 

• The data that can be leveraged to define safety performance reference values.  

This best practice outlines a process for leveraging human driving data to establish safety performance targets for 
ADS-DV behaviors. The targets within the specific use-case, exemplified in this best practice, are based on 
naturalistic driving data from manually driven vehicles, in the hope of aiding understanding from a broad audience 
of stakeholders.  

Several studies have suggested that using human drivers as a reference point for an ADS-DV safety approach 
provides a relatable framing for behavioral evaluation. For instance, the RAND Corporation conducted research 
that involved interviewing a diverse group of autonomous vehicle (AV) stakeholders and surveying the general 
public to determine the impact of using human driving data on AV safety [4]. It concluded that using human drivers 
as a reference point for AV safety is generally consistent with public expectations. People are already accustomed 
to the risks associated with human-driven vehicles, and they expect ADS-DVs to outperform average human drivers. 

Throughout the document, we leverage an example use-case associated with a specific behavioral competency 
and analyze human drivers’ behaviors through the usage of NDS. As mentioned previously, the outlined process 
can be generalized and abstracted to remain applicable to other data sources and comparison points to establish 
safety performance thresholds. The data and statistical examples used are for illustrative purposes, only. 
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1. Scope 

Human driving data1 provides one possible source for establishing reference values (i.e., performance threshold) 
for ADS-DVs. This best practice describes a framework to establish human driving data reference values for ADS 
safety performance metrics. This framework provides a way to assess different behaviors and is broadly 
generalizable. Key characteristics of datasets that can be used to establish these reference values for ADS are 
described in an objective, repeatable, and explainable way.  

This best practice offers guidance on ensuring data quality and conducting appropriate analyses, including sample 
size determination, error analysis and interpretation, variance, standard deviation, segmentation, and normalization. 
The guidelines established in this best practice specifically concentrate on interactions among road users, such as 
vehicles and pedestrians. Other factors (e.g., presence of objects like debris or construction equipment) and other 
aspects of safety behavior that do not involve the interaction between two road users, are beyond the scope of this 
best practice. 

1.1 Purpose 

This best practice is intended for use by the technical community (developers, manufacturers, testers, etc.) to aid 
in the development, validation, and safe deployment of SAE level 4 and level 5 ADSs. It may also be useful to public 
agencies and stakeholders, including standards bodies and governmental decision-makers, who have interest in 
better understanding the safety posture of ADS deployments.  

This best practice supports public and private organizations in preparing for and deploying ADS-DV systems. For 
example, it may be used by ADS manufacturers and developers to establish quantitative performance baselines 
based on AVSC safety metrics for various driving behaviors. It is intended to garner discussion, foster public 
understanding, and promote acceptance of ADS-DVs. 

2. References 

2.1 Applicable Documents 

The following publications were referenced during the development of this document. Where appropriate, 
documents are cited. 

2.1.1 SAE Publications 

Unless otherwise indicated, the latest issue of SAE publications applies. Available from SAE International, 
400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or 
+1 724-776-4970 (outside USA), www.sae.org.  

AVSC00002202004 AVSC Best Practice for Describing an Operational Design Domain: Conceptual Framework 
and Lexicon 

AVSC00004202009 AVSC Best Practice for Data Collection for Automated Driving System-Dedicated Vehicles 
(ADS-DVs) to Support Event Analysis 

AVSC00006202103 AVSC Best Practice for Metrics and Methods for Assessing Safety Performance of 
Automated Driving Systems (ADS) 

  

 
1  Other relevant data sources may include crash datasets to understand the causes of crashes or driver simulator data to 

simulate a wide range of driving scenarios in a controlled environment for ADS testing or performance validation purposes 
and other public datasets like nuScenes, nuPlan, or Waymo Open dataset. 

http://www.sae.org/
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AVSC00008202111 AVSC Best Practice for Evaluation of Behavioral Competencies for Automated Driving 
System Dedicated Vehicles (ADS-DVs) 

AVSC00009202208 AVSC Best Practice for Interactions Between ADS-DVs and Vulnerable Road Users (VRUs) 

SAE J3016_202104 Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road 
Motor Vehicles 

SAE J3216_202107 Taxonomy and Definitions for Terms Related to Cooperative Driving Automation for On-Road 
Motor Vehicles 

SAE J3164_202301 Ontology and Lexicon for Automated Driving System (ADS) - Operated Vehicle Behaviors 
and Maneuvers in Routine/Normal Operating Scenarios 

2.1.2 Other Documents 

[1] NHTSA. (2018). NHTSA’s safety performance measures selection criteria (Report No. DOT HS 812 628). 
National Highway Traffic Safety Administration. 
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812628.  

[2] Inouye, J. (2015). Practical guide to leading indicators: Metrics, case studies & strategies. Campbell 
Institute, National Safety Council. https://www.thecampbellinstitute.org/wp-
content/uploads/2017/05/Campbell-Institute-Practical-Guide-Leading-Indicators-WP.pdf.  

[3] CCPS. (2011). Process safety leading and lagging metrics… You don’t improve what you don’t measure. 
Center for Chemical Process Safety. 
https://www.aiche.org/sites/default/files/docs/pages/CCPS_ProcessSafety_Lagging_2011_2-24.pdf.  

[4] Blumenthal, M.S., Fraade-Blanar, L., Best, R., and Irwin, J.L. (2023). Safe enough: Approaches to 
assessing acceptable safety for automated vehicles. RAND Corporation. https://doi.org/10.7249/RRA569-1. 

[5] ISO. (2018). Road vehicles — Functional safety — Part 1: Vocabulary (Standard no. ISO 26262-1:2018). 
International Organization for Standardization. https://www.iso.org/standard/68383.html. 

[6] Fraade-Blanar, L., Blumenthal, M.S., Anderson, J.M., and Kalra, N. (2018). Measuring automated vehicle 
safety. RAND Corporation. https://www.rand.org/pubs/research_reports/RR2662.html. 

[7] NHTSA. (2021, October 19-21). ADS research [Virtual conference presentation]. NHTSA Safety Research 
Portfolio Public Meeting. https://downloads.regulations.gov/NHTSA-2021-0060-0010/attachment_4.pdf.  

[8] Pollard, J,H. (1979). A handbook of numerical and statistical techniques: With examples mainly from the life 
sciences. Cambridge University Press. 

[9] VTTI. (2022). Project highlights: Automated mobility partnership. Virginia Tech Transportation Institute. 
https://www.vtti.vt.edu/projects/amp.html.  

[10] Helwig, N.E. (2020). One sample t test. University of Minnesota. 
http://users.stat.umn.edu/~helwig/notes/OneSampleTest.pdf. 

[11] NCSL. (2022). Safety passing bicyclists chart. National Conference of State Legislatures. 
https://www.ncsl.org/research/transportation/safely-passing-bicyclists.aspx. 

[12] NIST. (2012). Critical values of the student’s t distribution. NSIT/SEMATECH e-handbook of statistical 
methods. National Institute of Standards and Technology. 
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3672.htm. 

  

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812628
https://www.thecampbellinstitute.org/wp-content/uploads/2017/05/Campbell-Institute-Practical-Guide-Leading-Indicators-WP.pdf
https://www.thecampbellinstitute.org/wp-content/uploads/2017/05/Campbell-Institute-Practical-Guide-Leading-Indicators-WP.pdf
https://www.aiche.org/sites/default/files/docs/pages/CCPS_ProcessSafety_Lagging_2011_2-24.pdf
https://doi.org/10.7249/RRA569-1
https://www.iso.org/standard/68383.html
https://www.rand.org/pubs/research_reports/RR2662.html
https://downloads.regulations.gov/NHTSA-2021-0060-0010/attachment_4.pdf
https://www.vtti.vt.edu/projects/amp.html
http://users.stat.umn.edu/~helwig/notes/OneSampleTest.pdf
https://www.ncsl.org/research/transportation/safely-passing-bicyclists.aspx
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3672.htm
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[13] Baguley, T. (2004). Understanding statistical power in the context of applied research. Applied Ergonomics, 
35(2), 73-80. https://doi.org/10.1016/j.apergo.2004.01.002. 

[14] Seltman, H.J. (2018). Experimental design and analysis. Carnegie Mellon University. 
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf. 

[15] Karayel, D., Topakci, M., Ünal, İ., Šarauskis, E., and Canakci, M. (2012). Using real-time kinematic (RTK) 
global positioning system (GPS) for the determination of seedling distributions over the field. Zemdirbyste, 
99(4), 425-430. 

[16] Mohammed, T.H.H. and Trilaksono, B.R. (2018). Integrated INS/GPS navigation system. International 
Journal on Electrical Engineering and Informatics, 10(3) 491-512. https://doi.org/10.15676/ijeei.2018.10.3.6.  

[17] Hasegawa-Johnson, M. (2017, September 5). ECE 417 Lecture 3: 1-D Gaussians. University of Illinois, 
Urbana Champaign. https://courses.engr.illinois.edu/ece417/fa2017/ece417fa2017lecture3.pdf. 

3. Definitions 

3.1 Operational Design Domain (ODD) (SAE J3016_202104) 

Operating conditions under which a given driving automation system or feature thereof is specifically designed to 
function, including, but not limited to, environmental, geographical, and time-of-day restrictions, and/or the requisite 
presence or absence of certain traffic or roadway characteristics. 

3.2 [Safety] Metric 

A measurement used to evaluate and track safety performance. 

3.3 Behavioral Competency 

Expected and measurable capability of an ADS feature operating a vehicle within its ODD.  

NOTE: Competency refers to the term “expected” in the definition. Using skills, knowledge, and abilities, an ADS 
executes behaviors competently according to performance criteria set by the ADS developer. 

3.4 Safety Outcome Metrics 

A direct measurement of actualized outcomes or adherence to societal norms.  

NOTE 1: Safety outcomes temporally lag deployment. It can take considerable time to collect a sufficient sample 
size to establish statistically significant measurements.  

NOTE 2: Societal norms may differ by industry, geographic regions, and application.  

NOTE 3: Although an ADS is expected to have benefits to other societal outcomes, such as mobility and 
accessibility, the focus of this work is on safety outcomes only.  

NOTE 4: ADS safety outcome metrics concern a variety of ADS market penetration rates but are generally 
assumed to be commercial-scale deployments, and not pilots with vehicles operated by highly trained 
drivers employed by ADS technology developers or small-scale demonstrations, such as very low volume 
deployments, limited geographic regions, or tightly limited ODD. 

  

https://doi.org/10.1016/j.apergo.2004.01.002
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://doi.org/10.15676/ijeei.2018.10.3.6
https://courses.engr.illinois.edu/ece417/fa2017/ece417fa2017lecture3.pdf
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3.5 Scene 

A snapshot of the environment including the scenery, dynamic elements, and all actor and observer 
self-representations, and the relationships between those entities.  

NOTE 1: This best practice specifically references operational scenes encountered by an ADS-DV.  

NOTE 2: Only a scene representation in a simulated world can be all-encompassing (i.e., an objective scene or 
ground truth). In the real world, the scene is incomplete, incorrect, uncertain, and from one or several 
observers’ points of view (i.e., a subjective scene).  

NOTE 3: A scene is a descriptive representation of the state of the world at a point in time. A scenario consists of 
a sequence of scenes.  

Example: At an instant in time, an ADS-DV is traveling at 35 km/h, in the right-hand lane on an arterial roadway in 
clear conditions, while another human-operated vehicle travels in the adjacent left lane at 33 km/h with the 
ADS-operated vehicle located in the blind spot of the human-operated one. 

3.6 [Operating] Scenario 

A description of the temporal development through several consecutive scenes in a sequence of scenes. 

NOTE 1: Every scenario starts with an initial scene. In contrast to a scene, a scenario spans a certain amount of 
time. Actions and events can be specified as transitions between scenes to characterize the temporal 
development within a scenario. Scenes in a scenario can also be augmented with goals, values, and 
beliefs of the traffic participants, resulting in a sequence of situations.  

NOTE 2: Scenarios may be defined over varying durations. A scenario may overlap with or be completely 
contained within another scenario. For example, an overtaking scenario may be decomposed into three 
scenarios: lane change scenario, followed by lane maintenance scenario, followed by lane change 
scenario.  

NOTE 3: Scenarios may be defined at varying levels of abstraction, ranging from individual quantitative scenarios 
to quantitative classes of one or more scenarios, to qualitative scenario classes with narrative 
descriptions. 

NOTE 4: This best practice specifically references emergency and nonemergency scenarios encountered by 
ADS-operated vehicles.  

NOTE 5: The term “operating” in this scenario definition refers to dynamic driving task (DDT) performance (as 
opposed to, for example, a post-crash scenario in which a first responder is interacting with an 
ADS-equipped vehicle that is no longer performing the DDT). It also comprehends all types of operating 
scenarios, such as test scenarios (whether on track or in simulation), as well as scenarios encountered 
on road. 

3.7 Safety Envelope 

A kinematically defined state space around a vehicle that represents a buffer between the subject vehicle and other 
objects in the scene. A safety envelope may vary with specific context. 

3.8 Hazardous Event 

The combination of a vehicle-level hazard and an operational situation [5] of the vehicle with potential to lead to a 
harmful event (e.g., a collision) if not controlled. 
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4. Establishing Reference Values for Safety Performance Metrics 

ADS developers and manufacturers should establish context-relevant2 reference values and their uncertainties for 
safety performance metrics. In AVSC00006202103, several recommendations were brought forward that help 
ensure a robust evaluation of performance is undertaken.  

Metrics employed in safety evaluations need to be complemented with reference values (and associated confidence 
intervals) that qualify the ADS performance as a comparison to such targets. For instance, if a metric focuses on 
the minimum passing distance between an ADS vehicle and VRUs, a target buffer would need to be set to enable 
the correct identification of notable events and the evaluation of the ADS’s behaviors. This best practice outlines a 
process that can be followed to establish such targets, which, in turn, enable a clear evaluation of potential 
violations. 

Reference values should be commonly understandable to all stakeholders involved in the development and 
deployment of ADS systems, including regulatory bodies, developers, manufacturers, and end users. They should 
be valid, reliable, and feasible, such that they accurately reflect the desired safety performance and can be 
consistently measured and achieved in real-world scenarios. In addition, they should be non-manipulatable to 
prevent alteration to a desired outcome. These values should be determined objectively using repeatable methods 
of evaluation [6]. NDS data of human drivers can be one such input to setting these values.  

This best practice focuses on normal/routine driving conditions in which the ADS and other road users are expected 
to adhere to the rules of the road and broader societal expectations, as well as reasonably foreseeable situations 
that may arise during driving, such as traffic congestion or pedestrian crossings. 

A specific safety performance metric and behavioral competency, as noted in 5.1.1 (maintaining a lane while 
passing a pedestrian), is utilized throughout this best practice as an illustrative example of a method to establish 
reference values. This method is applicable for all safety metrics and competencies. 

NOTE: This best practice provides an example concentrating on interactions between two road users only (such 
as a vehicle and a pedestrian) and excludes interactions with other road users that may be involved in an 
event.  

Incorporating data from NDS should be done with caution, as it represents a mix of desirable and undesirable 
human driving behaviors, making it just one input among others to inform ADS safety performance standards. For 
example, imitating speeding behaviors would not be advisable. Comparisons to behaviors observed from NDS can 
provide an important starting point for behavioral evaluation but may not be the sole basis for setting reference 
values. Section 5 describes a methodology for setting reference values using NDS for behavioral evaluation. 

  

 
2  “Context-relevant,” in this document, is defined in terms of ODD and specific scenarios. 
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5. Methodology for Setting Safety Metric Reference Values Using Human 
Driving Data 

This section provides a methodology for setting reference values using human driving data. A four-step, high-level 
methodology for setting metric reference values is shown in FIGURE 1 and includes: 

• Step 5.1: Describing the scenario of interest based on a sought behavioral competency. 

• Step 5.2: Filtering data from NDS. 

• Step 5.3: Performing data analysis and testing. 

• Step 5.4: Informing the performance target choice of ADS developer using NDS analysis. 

 FIGURE 1  Analysis framework 

 

5.1 Describing the Scenario of Interest Based on a Sought Behavioral Competency 

Scenarios provide context for ADS behavioral competencies which are constructed using terms that describe ODD 
conditions, object and event detection and response (OEDR), and maneuvers [AVSC00009202208]. Contextual 
ODD information, such as the environment, geography, time of-day restrictions, and specific traffic or roadway 
characteristics, should be considered when determining reference values. ADS developers should comprehensively 
define the scenario within the context of their ODD to ensure the validity of results and conclusions derived from 
the remaining steps in this process.3 

ADS performance in various scenarios can be evaluated using a combination of behavioral competencies and 
metrics. AVSC00008202111 and AVSC00006202103 describe these, respectively.  
  

 
3 It is important to note that the intention of using behavioral competencies is to imply that certain levels of performance can 

be transferable to other ODDs. Therefore, an ADS developer can focus on defining a representative set of scenarios rather 
than an exhaustive list, striking a balance between comprehensiveness and practicality. 
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5.1.1 Example Scenario: Maintaining a Lane When Passing a Pedestrian 

A specific safety performance metric and behavioral competency, as described in the scenario4 below, is used to 
illustrate the principles of the framework outlined in Section 5. NDS data used for the example scenario was 
collected by a manually driven vehicle with various sensors and cameras to capture data on the driver’s behavior, 
including acceleration, braking, turning, etc. These vehicles are referred to as subject vehicles (SVs) in the rest of 
the document.  

 

 FIGURE 2  Example scenario: maintaining a lane when passing a pedestrian 

 

An ADS manufacturer can assess the safety impact of the ADS-DV relative to a human performance reference 
value. This scenario is defined in TABLE 1. This method can also be followed for other scenarios. 
  

 
4 An ADS developer may choose to leverage existing standards to describe scenarios. For example, EuroNCAP (European 

New Car Assessment Programme) and other Advanced Driver Assistance System (ADAS) standards describe a set of 
standardized test scenarios and protocols to evaluate the safety performance of vehicles, including their interaction with 
VRUs, such as pedestrians and cyclists. 

Scenario (NDS Data) 

 

SV maintaining a lane while passing a pedestrian where SV attempts to maintain proper lane position with 

respect to designated lane markings and speed limits while maintaining a safety envelope with the pedestrian 

in the form of lateral distance at the time of passing. 

 

The goal of using this scenario for data analysis is to demonstrate a process to establish a baseline for 

minimum passing distance (i.e., lateral separation distance) for an ADS while passing a VRU such as a 

pedestrian on the roadside either moving longitudinally or staying relatively stationary, as shown in FIGURE 2. 
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 TABLE 1  Example of describing the scenario of interest based on a sought behavioral competency 

SAFETY PERFORMANCE METRICS (from AVSC00006202103) 

Category Safety Performance Metrics Description 

Maintain a safety envelope Lateral distance A violation of a kinematically defined state space 
around a vehicle that represents a buffer/lateral 
distance threshold between the subject vehicle 
and pedestrian in the environment 

BEHAVIORAL COMPETENCIES (from AVSC00008202111) 

Category Behavior Specification 

Roadway infrastructure Maintaining a lane Driving along roads predictably and consistently 
maintaining proper lane position with respect to 
designated lane markings and speed limits 

Dynamic conditions Responding to VRUs Maintaining a safety envelope with respect to 
VRUs 

OPERATIONAL DESIGN DOMAIN (ODD) CHARACTERISTICS (from AVSC00009202208) 

Considerations Specification 

Geographical Urban 

Roadway type Local roads, arterials, and collectors5 

Time of day All 

Weather conditions All 

5.2 Filtering Data from NDS 

Human driver performance metrics, derived from NDS, can be used to establish reference values for ADS 
performance. However, all datasets have limitations and care should be taken to understand and account for them 
when using the data to derive reference values. These limitations and any assumptions should be documented for 
any NDS used for this purpose. Below is a sample list of data factors an ADS developer can consider while 
characterizing an NDS dataset: 

• Data type: Video and dynamic performance (e.g., kinematic) data via a network of sensors distributed around 
the vehicle. AVSC0004202009 makes recommendations for the collection, storage, and retrievability of onboard 
motor vehicle ADS event data. It provides the data type and characteristics that may be useful in developing 
reference values for safety performance. The data collected should be representative of real-world scenarios 
and behaviors that the ADS is expected to encounter.6 

• Sensor suite on vehicle: Real-time video compression; a multiplexed video channel permitting multiple video 
inputs; lane tracker; sound level meter; three-axis gyroscopes; three-axis accelerometers; and radar.  

• Data collection frequency: Sufficient to capture underlying signal to calculate safety metrics. 

• Data sample size: Sample size large enough to calculate confident safety metric distributions.  

• Fields of view: Maximum area sensors/instruments can capture/observe. 

• Measurement error in data collection system: Validate by comparing NDS with empirical data.  

• Locality of data collection: Operating in various urban, rural, residential, nonresidential, etc.  

  

 
5  These roadway classification labels are appropriate for this use because scenarios are generically described and may not 

necessarily be specific to one geographic location. Refer to AVSC00009202208 for a more-detailed discussion on describing 
an ODD. 

6  An ADS developer might consider sub-selecting behaviors that are desired to be emulated or performed by the ADS, 
particularly if population being modeled is not representative of the target use case. Techniques like nominal model 
sub-selection could be used. However, this best practice does not cover principles of sub-selecting behaviors. 
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• Road type: e.g., arterials and collectors and local roads.  

• Safety performance metrics (from AVSC00006202103): e.g., speed, jerk, distance, time to collision (TTC) (or 
another analogue for safety envelope), OEDR, reaction time. 

• Minimum segment length: The video segment length that corresponds to the time interval of data capture.  

• Weather conditions: Documented or observable weather conditions including rain, snow, etc. 

• Location of VRU: Precise location of VRU on roadside or sidewalk. 

5.2.1 Example Data Requirements 

For the development of the example used in this best practice, the AVSC utilized real-world NDS from the Virginia 
Tech Transportation Institute (VTTI) Automated Mobility Partnership (AMP) Program. AMP has built a library of 
crashes, near-crashes7, and driving cases8 [9]. In TABLE 2, an illustrative example is provided to demonstrate the 
data requirements that an ADS developer may consider, including the high-level features of AMP data that are 
relevant to the specific scenario being analyzed. 

 TABLE 2  Example of data requirements for assessing performance in the described scenario 

Data Factors Example Requirements AMP Data for the Chosen Scenario 

Data type Relevant saliency and sensing data as 
recommended by AVSC00004202009 

Video and dynamic performance (i.e., 
kinematic) data via a network of 
sensors distributed around the vehicle 

Data collection frequency Data collection frequency (e.g., 10 Hz 
or higher) as recommended by 
AVSC00004202009 

10 Hz 

Data sample size Sample size can be determined based 
on parameters set by developers (risk 
tolerance, standard deviation, 
confidence interval, performance of 
subsystems, and the hypothesized 
effect size) 

77 

Fields of view (FOV) Preferably, unrestricted Restricted—FOV restrictions leads to 
unavailability of exact position of VRU 
relative to the car while passing; 
however, VRU position can be 
estimated using basic kinematics 

Measurement error in data 
collection system 

Ground truth analysis by comparing 
NDS with empirical data 

Not available 

Locality Operating in various urban, rural, 
residential, nonresidential, etc.  

Urban 

Road type Arterials and collectors, local roads 
including its characteristics 

Arterials and collectors, local roads 

Safety performance metrics Speed, jerk, distance, TTC (or another 
analogue for safety envelope), OEDR, 
reaction time 

Speed, jerk, distance, TTC (or another 
analogue for safety envelope), OEDR, 
reaction time 

Minimum segment length 20 seconds 20 seconds 

Weather conditions Any Any 

  

 
7  “Near crashes” refer to situations where a driver takes an evasive action, such as jerking or braking, to avoid a collision, but 

the actual collision is narrowly avoided. 
8  “Driving cases,” in the AMP database, are segments of nominal driving under various conditions.  
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5.3 Performing Data Analysis and Testing 

The following subsections provide a guideline for performing data analysis on an NDS. The initial step for an ADS 
developer is to establish a null hypothesis for targeted data collection and analysis. For instance, the null hypothesis 
for the selected scenario in which a pedestrian is walking within the lane of travel of the ADS-DV could be, “The 
lateral distance does not increase between the SV and pedestrian from the time of initial detection to the time of 
passing.” Based on this initial hypothesis, an ADS manufacturer can opt to procure NDS scenarios from a third 
party, collect the data themselves, or filter data relevant to the scenario from a larger dataset. Regardless of the 
source of data, the analysis process should include the following steps, as illustrated in FIGURE 3. 

• Step 5.3.1: Performing an exploratory data analysis to ensure that the data needed to test a hypothesis is 
available and applicable, as well as relevant to the ODD of interest. The scope of this data should be consistent 
with the scenario definition and ODD context from 5.1; otherwise, the data collection will need to be augmented 
to fill any gaps.  

• Step 5.3.2: Execute the appropriate statistical hypothesis testing. 

• Step 5.3.3: Statistical analysis. 

▪ Step 5.3.3.1: Sample size requirements and statistical power analysis.  

▪ Step 5.3.3.2: Understanding uncertainties, error propagation, and accuracy. 

• Step 5.3.4: Utilize reference values for ADS performance thresholds. 

If the result of testing is consistent with the desired accuracy and acceptable error9, the results may be used as 
reference values for safety metrics in similar scenarios. If not, the ADS developer should acquire more data, test 
alternative hypotheses, and repeat 5.3.1 through 5.3.3. 

 FIGURE 3  Dataset analysis process 

 

  

 
9  Acceptable error or margin of error refers to the degree of uncertainty or inaccuracy that is considered acceptable in a 

measurement or analysis. 
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5.3.1 Exploratory Data Analysis 

The goal of this step is to verify that the data required for the scenario is available within the dataset. Vehicle data 
collected in 5.2 should be filtered based on the scenario description. This step helps identify patterns and 
relationships in the data, which can guide the formulation of relevant hypotheses for testing. 

AMP provided 77 samples of naturalistic driving data for the scenario defined in this best practice in 5.1.1. The 
samples are broken down based on the type of roadway and the direction of pedestrian movement as follows: 

• Arterials and Collectors (46) 

▪ Pedestrian moving longitudinally10—21 

▪ Pedestrian relatively stationary11—25 

• Local Roads (31) 

▪ Pedestrian moving longitudinally—25 

▪ Pedestrian relatively stationary—6 

5.3.2 Hypothesis Testing 

AVSC recommends hypothesis testing12 and trend analyses on any driving dataset (including NDS) to establish 
data quality, accuracy, and an understanding of how errors can propagate during analysis. The following high-level 
steps can be followed by an ADS developer to define the hypothesis to be tested.13 

• Develop a theoretical framework by drawing on existing knowledge of patterns and trends of human driving and 
decision-making. Throughout this best practice, the AVSC uses “passing a pedestrian” as an example scenario 
to create its theoretical framework. 

• Formulate testable hypotheses that can be evaluated using empirical data. Hypotheses should be specific and 
measurable and should clearly articulate the relationship between variables. For example, a hypothesis relevant 
to this best practice: “The lateral distance does not increase between the SV and pedestrian from the time of 
initial detection to the time of passing.” 

• Define the variables and measures to test the hypothesis. This may involve identifying specific aspects of the 
phenomenon being studied that are of particular interest, such as driver behavior or ADS performance. For 
example, lateral distance, time of detection, and time of passing are the variables used in the above example 
hypothesis. 

• Evaluate the results to determine if a hypothesis is supported. Supported hypotheses can validate the 
theoretical framework and lead to new research questions, while unsupported hypotheses may require revisions 
to the framework or consideration of new variables or measures. 

 
10  Due to the restricted field of view of the sensor systems on the vehicles used in the AMP dataset, the precise position of the 

VRU relative to the vehicle at the moment of passing is unavailable. However, given the slow pace of movement of the 
pedestrian, the change in its position relative to the ADS-DV during the brief interval of passing is negligible. 

11  “Relatively stationary” refers to the case where pedestrian is either not moving or moving at a negligently slow speed with 
respect to vehicle. 

12  Hypothesis testing is one statistical approach for data analysis of NDS. ADS developers can utilize other approaches to 
analyze human data to inform ADS behavior. For example, NHTSA research work on testable cases highlights model-based 
predictive analytics approaches. These approaches involve the creation of mathematical models that simulate driving 
scenarios, enabling predictions of ADS behavior. By leveraging these models, ADS developers can assess and evaluate the 
performance of their systems in different testable cases. This broader range of analytical methods goes beyond hypothesis 
testing and provides additional tools for understanding and improving ADS behavior based on human data [7]. 

13  More information on defining hypotheses is available in [8]. 
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Hypothesis testing as outlined in this section can be done for any scenario defined by ADS developers with an 
available dataset. For the example scenario chosen in this best practice, the following hypotheses were tested:  

Hypothesis 1: Lateral distance between the subject vehicle (SV)14 and pedestrian increases with increase 
in SV speed. As shown in FIGURE 4, the lateral distance between SV and pedestrian tend to increase15 as the 
initial speed (velocity) recorded at time of detection of the SV increases to the point of passing the VRU.  

 FIGURE 4  Lateral distance increases with speed 

 

The approach used in this analysis has limitations indicated by the low values of R-square and p-values. The low 
R-square value suggests that only a small proportion, approximately 7%, of the variation in lateral distance can be 
explained by changes in speed. Additionally, the low p-values indicate that the observed relationship between speed 
and lateral distance may not be statistically significant. To address these limitations, a larger and more diverse 
dataset may be required that includes a wider range of speeds and corresponding lateral distances.  

Hypothesis 2: Lateral distance between the SV and pedestrian increases while the speed decreases from 
the time of initial detection to the time of passing. To test this hypothesis, flow diagrams were developed to 
visualize the SV movement from the initial point that the human driver of the SV detected the pedestrian on the 
roadside to the point of last detection before the pedestrian goes out of SV’s FOV. FIGURE 5 shows the flow 
diagrams broken down by four possible combinations of lateral distance and speed recorded at the time of detection 
and time of passing. 

• Lateral distance increases and speed of SV decreases. 

• Lateral distance and speed increase. 

• Lateral distance and speed decrease. 

• Lateral distance decreases and speed increases. 

 
14  The term “subject vehicle” pertains to the vehicle operated by human drivers in the NDS dataset provided by AMP, within a 

presumed fixed infrastructure of arterial and local roads, such as a fixed road width. 
15  While a linear regression is presented in this section, the selection of the best-fit model should be informed by the exploratory 

data analysis shown in the previous sections. 
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 FIGURE 5  Lateral distance versus speed distribution 

 

Visual inspection of FIGURE 5 shows, in most cases, the SV moved away from the pedestrian while passing, which 
supports the hypothesis. To analyze the SV driver’s behavior when moving away from pedestrians, differences 
between their initial and final position and speed was calculated. In more than 50% of cases, the driver marginally 
reduced their speed in addition to moving away from the pedestrian. The proportion of cases where this occurred 
was determined through individual calculations of the differences and their comparison. These trends are consistent 
with the expected behavior of the SV and provided a validation of the NDS selected for this scenario. 

Hypothesis 3: Lateral distance between the SV and pedestrian should be higher for cases when a 
pedestrian is walking while not facing the vehicle. There were three types of cases analyzed. 

• Case 1—Pedestrian moving longitudinally away: This case involves a pedestrian who is moving away from 
the SV in the same direction the SV is traveling. This scenario can arise in various situations, such as when the 
pedestrian is walking along a roadside that runs parallel to the road where the SV is traveling. In this case, the 
pedestrian’s back is facing the SV. An ADS developer should list the edge cases to consider whether they fall 
within the scope of their ODD. Some examples of edge cases include:  

▪ The pedestrian is not walking in a straight line but moving erratically, such as zigzagging or walking in 
circles. 

▪ The pedestrian is walking backwards while moving away from the SV, which means their front is facing the 
SV. This scenario can happen when the pedestrian is walking backwards to take a picture. 
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• Case 2—Pedestrian moving longitudinally towards: This case refers to a scenario in which the pedestrian 
is walking towards the subject vehicle in the same direction that the vehicle is traveling. The pedestrian’s front 
is facing the SV. Some examples of edge cases include:  

▪ The VRU is moving towards the SV in the direction the SV is traveling but is walking backwards while doing 
it (the pedestrian’s back is facing the SV16).  

▪ The VRU is moving towards the SV in a wheelchair or other assistive device, which may have different 
movement patterns than someone walking. 

• Case 3—Pedestrian relatively stationary: This case refers to a scenario in which the pedestrian is stationary 
relative to the SV, meaning the pedestrian may be facing towards or away from the SV or may not be facing it 
at all. 

▪ The pedestrian is standing still but is leaning or bending over. This can hinder the system’s ability to 
recognize them as a pedestrian and accurately assess their behavior. 

APPENDIX B shows the flow diagram for this hypothesis along with the statistics. Although the mean lateral 
distance for Case 1 is higher than other cases, the sample size is not large enough to support a conclusion.  

Hypothesis 4: Subject vehicle maintains a minimum passing distance to pedestrians required by state law. 
ADS manufacturers can use a one-sample t-test to compare the mean behavior of drivers in the NDS to a standard 
value. This allows the developer to determine whether the sample mean is different from a specific value [10]. This 
also demonstrates a method a developer can use when a specific distance is cited by law.  

In the chosen scenario for this best practice, the specific value is the minimum passing distance that may be 
recommended by individual states (e.g., 3 feet, which can be approximated to 0.9 m) [11]. The t-value, t-table value 
[12], and p-value for this population were found to be 20, 1.65, and <0.05, respectively. The t-value does not fall 
into the range of t-table values. Therefore, the null hypothesis is rejected because the SV maintains more distance 
to pedestrians than the recommended minimum passing distance. To reflect the confidence in correctly rejecting 
the null hypothesis, the ADS developer can also calculate statistical power as explained in 5.3.3.1.  

5.3.3 Statistical Analysis 

5.3.3.1 Sample Size Requirements and Statistical Power Analysis 

Determining the right sample size is a function of acceptable error, standard deviation, and confidence interval 
(z score17). The uncertainty in estimating a safety metric when actual values are not available (as with lateral 
distance in the example scenario) depends on the intrinsic variability of the measurements as well as the number 
of observations available. The impact of errors in estimating any variable can typically be reduced by increasing the 
sample size. ADS developers can decide on an appropriate sample size based on acceptable error (or risk tolerance 
of an ADS developer). For example: 

• For standard deviation (SD) = 0.5 m, error = 0.05 m, z = 1.96, then sample size could be 385. 

• For SD = 0.5 m, error = 0.1 m, z = 1.96, then sample size could be 96. 

For the chosen scenario in this best practice, based on the available dataset of 77 samples, the observed mean 
and median for lateral distance between the SV and pedestrian was 2.58 m and 2.45 m, respectively. Additionally, 
95% of the time drivers maintained more than 1.57 m distance from pedestrians while passing.  
  

 
16  This is an example of an edge case but it highlights wide range of scenarios that can be used to derive reference values.  
17  The example analysis presented in this section uses z-values since the population standard deviation is known and it is 

assumed that the entire population data follows a standard normal distribution. It is important to note that t-values can also 
be used in similar analyses, as described earlier in this document. 
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Statistical power analysis18 is another effective method to determine a minimum sample size for analysis [13] [14]. 
With a given statistical power (commonly accepted lower threshold of 80% or higher), the significance level 
(commonly accepted lower threshold of 5%) and expected effect size (calculated to be 0.4 m based on differences 
of mean and SD), the sample size required for a statistically significant analysis could be approximately 15019 (see 
APPENDIX C).  

5.3.3.2 Understanding Uncertainties, Error Propagation, and Accuracy 

Ensuring the accuracy of measurements and data points is crucial, especially when conducting perception-related 
analysis and addressing measurement errors. One effective approach for evaluating perception accuracy is through 
the analysis of ground truth data. This method involves comparing recorded values, such as position, speed, or 
acceleration, obtained from video measurements or other sensor data to the actual values. By assessing the 
consistency between recorded and actual pose values, the accuracy of various measurements can be established. 

It is recommended to collect and compare data from multiple sensors or sensor modalities on a single platform, or 
independently collect measurements from other actors in the scene concurrently, to improve precision. Real-time 
kinetic (RTK) corrected satellite navigation systems are commonly used in research and testing to establish ground 
truth for localization [15]. Ground truth data was not available for the NDS used in this analysis. AMP researchers 
thoroughly reviewed the video footage for each available case and determined the values used represent 
reasonably accurate distance measurements both longitudinally and laterally.20  

Measurement errors can have cascading effects throughout the entire pipeline, impacting perception, path planning, 
and vehicle motion control. Kinematic sensors can introduce lateral position errors ranging from 0.5 to 3.0 m [14]. 
For example, AMP reported a maximum error of 1 m in the lateral positioning data. In the absence of ground truth 
analysis, an ADS developer can employ the Monte Carlo method to estimate error propagation. This approach 
involves repeated calculations of mean lateral distance (or other relevant quantities), while randomly varying the 
expected error within the stated precision limits. Alternatively, Gaussian noise can be added to the raw lateral 
distance to approximate the error for the real-time kinematic sensor [17]. APPENDIX D demonstrates the application 
of the Monte Carlo method, illustrating the distribution of mean lateral distance and highlighting the effects of 
measurement data imprecision. 

5.3.4 Utilize Reference Values for ADS Performance 

Steps 5.3.1 through 5.3.3 describe the process of testing hypotheses associated with the NDS data to derive 
threshold performance for ADS in specific scenarios. The testing results should be compared to desired accuracy 
and acceptable error levels. The results can also serve as benchmarks or criteria for evaluating safety metrics in 
context-relevant scenarios. The hypothesis testing aims to identify whether there is a significant change in the lateral 
distance between the SV and the pedestrian during a passing maneuver. If the results meet the safety performance 
requirements set by the ADS developer, the lateral distance values obtained can be used as reference values for 
safe pedestrian passing in similar scenarios.  

If the results do not meet the organization’s requirements, the ADS developer should collect more data or test 
alternative hypotheses, repeating the testing steps outlined in 5.3.1 through 5.3.3, while adjusting the hypotheses 
and modifying the parameters. This iterative process should continue until the desired accuracy and acceptable 
error levels are met for the scenario being evaluated, ultimately leading to establishing safe lateral distance 
reference values for passing pedestrians. 
  

 
18  Statistical power, or sensitivity, is the likelihood of a significance test detecting an effect. Typically, 80% power (which means 

that the analysis has 80% confidence in correctly rejecting the null hypothesis) is the commonly accepted confidence 
threshold for null hypothesis rejection [16]. 

19  The sample size of 77 available for this scenario is smaller than the suggested sample size of 150, which may result in 
reduced statistical power and accuracy. This example was used to illustrate the process, only and not intended to show 
validity of the data. 

20  The accuracy process and methodology utilized by AMP researchers were reviewed and deemed acceptable by the AVSC 
for the purpose of this example analysis. It is expected that AMP will include a detailed description of their methodology in 
the final documentation to provide transparency and ensure clarity regarding the accuracy assessment process. 
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5.4 Informing the Performance Target Choice of ADS Developer Using NDS Analysis 

ADS manufacturers have the option to establish more stringent thresholds than those required by traffic regulations. 
For instance, the mean lateral distance between SV and pedestrians during passing was determined to be 2.58 m, 
indicating that SVs maintain a distance greater than 2.58 m in 50% of instances. It should be noted that certain 
states may only mandate a passing distance of ~0.9 m (3 feet), meaning that violations of this distance in the NDS 
dataset represent just 3% of cases.  

FIGURE 6 depicts a graph that illustrates reference value violations caused by human-driven vehicles. Assuming 
a minimum safe lateral distance of 0.9 m between SV and pedestrians, the NDS dataset suggests that 3% of cases 
present an opportunity for ADS developers to improve safety performance compared to humans. This is because 
ADS can be programmed to eliminate errors in judgment that human drivers may make.21  

Once reference values are determined for specific scenarios of interest, ADS developers should engage in iterative 
testing and analysis to further refine these values. This iterative process can enable ADS developers to make design 
choices that align with the performance goals set by the reference values. 

 FIGURE 6  Percentage of instances exceeding example reference values 

 

  

 
21  While ADS present an opportunity for improving safety by eliminating human errors in judgment, they may also introduce 

new risks, such as software failures or sensor malfunctions, that need to be carefully managed and addressed. Such risks 
are out of the scope of this document. 
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6. Summary 

This AVSC best practice provides tools for establishing quantitative performance reference values that can be 
integrated into a broader safety assurance framework for ADS. By using the framework and data analysis processes 
described in this best practice, ADS manufacturers and developers can build evidence and make a case for the 
safety of their system. The reference values established through this framework provide additional meaning to the 
safety performance metrics and behavioral competencies described in other AVSC best practices, allowing for a 
more comprehensive approach to evaluating the safety and performance of ADS. 

The metrics and methods for assessing safety performance of ADS-DVs [AVSC00006202103] can be used in 
combination with the quantitative performance reference values to provide a more comprehensive picture of the 
system’s safety. Similarly, the evaluation of behavioral competencies for ADS-DVs [AVSC00008202111] can be 
informed by the reference values established through the framework described in this best practice. These 
complementary best practices work together to ensure that the system design achieves the performance goals 
established by the reference values while assessing its behavioral competencies and safety performance using a 
range of metrics and methods. 

Consistent with other AVSC best practices, this document supports industry-led, voluntary approaches in the 
standards development community and is expected to evolve as technology matures. Public agencies may use this 
best practice to better understand the safety posture of ADS deployments. In addition to the technical development 
community, other audiences considered in the development of this best practice include standards bodies, public 
agencies, and other decision-makers that may influence the deployment of ADS-DVs. 

7. About Automated Vehicle Safety Consortium™ 

The objective of the Automated Vehicle Safety Consortium™ (AVSC) is to provide a safety framework around which 
automated vehicle technology can responsibly evolve in advance of the broad use of commercialized vehicles. The 
consortium will leverage the expertise of its current and future members and engage government and industry 
groups to establish best practices and provide stakeholders with ADS safety-related information. This 
technology-neutral content can form the foundation for key considerations for deploying SAE level 4 and level 5 
automated vehicles on public roads. 

AVSC Vision: 
Public acceptance of SAE level 4 and level 5 automated driving systems as a safe and beneficial component of 
transportation through industry consensus. 

AVSC Mission: 
The mission of the Automated Vehicle Safety Consortium™ (AVSC) is to quickly establish safety principles, 
common terminology, and best safety practices, leading to standards to engender public confidence in the safe 
operation of SAE level 4 and level 5 light-duty passenger and cargo on-road vehicles ahead of their widespread 
deployment. 

The AVSC will: 

• Develop and prioritize a roadmap of pre-competitive topics; 

• Establish working groups to address each of the topics; 

• Engage the expertise of external stakeholders; 

• Share output/information with the global community; 

• Initially focus on fleet service applications. 
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8. Contact Information 

To learn more about the Automated Vehicle Safety Consortium™, please visit https://avsc.sae-itc.org. 

Contact: AVSCinfo@sae-itc.org.  
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10. Abbreviations 

ADAS Advanced driver assistance system 

ADS Automated driving system 

ADS-DV Automated driving system-dedicated vehicle 

AMP Automated Mobility Partnership 

AV Autonomous vehicle 

AVSC Automated Vehicle Safety Consortium™ 

DDT Dynamic driving task 

FOV Field of view 

NDS Naturalistic driving studies 

NHTSA National Highway Traffic Safety Administration 

ODD Operational design domain 

OEDR Object and event detection and response 

RTK Real-time kinetic 

SAE ITC SAE Industry Technologies Consortia® 

SAE Society of Automotive Engineers 

SD Standard deviation 

SE Standard error 

SV Subject vehicle 

TTC Time to collision 
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V&V Verification and validation 

VRU Vulnerable road user 

VTTI Virginia Tech Transportation Institute 
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APPENDIX A. Quick Look 

Establishing Reference Values for Safety Performance Metrics (Section 4) 

• ADS developers and manufacturers should establish context-relevant reference values and their uncertainties 
for safety performance metrics.  

• Reference values should be commonly understandable to all stakeholders involved in the development and 
deployment of ADS systems, including regulatory bodies, developers, manufacturers, and end users.  

• Incorporating data from NDS should be done with caution as it represents a mix of desirable and undesirable 
human driving behaviors, making it just one input among others to inform ADS safety performance standards.  

Methodology for Setting Safety Metric Reference Values Using Human Driving Data (Section 5) 

• This section provides a methodology for setting reference values using human driving data which is organized 
into four main process steps: 

▪ Describing the scenario of interest based on a sought behavioral competency. 

▪ Filtering data from NDS. 

▪ Performing data analysis and testing. 

▪ Informing the performance target choice of ADS developer using NDS analysis. 

Describing the Scenario of Interest Based on a Sought Behavioral Competency (5.1) 

• Contextual ODD information, such as the environment, geography, time-of-day restrictions, and specific traffic 
or roadway characteristics, should be considered when determining reference values.  

• ADS developers should comprehensively define the scenario within the context of their ODD to ensure the 
validity of results and conclusions derived from the remaining steps in this process. 

Example Scenario: Maintaining a Lane When Passing a Pedestrian (5.1.1) 

• A specific safety performance metric and behavioral competency is provided in an example scenario to illustrate 
the principles of the framework outlined in Section 5. 

Filtering Data from NDS (5.2) 

• Human driver performance metrics, derived from NDS, can be used to establish reference values for ADS 
performance. However, all datasets have limitations, and care should be taken to understand and account for 
them when using the data to derive reference values. These limitations and any assumptions should be 
documented for any NDS used for this purpose. 

Example Data Requirements (5.2.1) 

• The AVSC utilized real-world NDS from the Virginia Tech Transportation Institute (VTTI) Automated Mobility 
Partnership (AMP) Program. In TABLE 2, an illustrative example is provided to demonstrate the data 
requirements that an ADS developer may consider, including the high-level features of AMP data that are 
relevant to the specific scenario being analyzed. 

Performing Data Analysis and Testing (5.3) 

• The initial step for an ADS developer is to establish a null hypothesis for targeted data collection and analysis. 
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• The analysis process should include the following steps: 

▪ Performing an exploratory data analysis to ensure that the data needed to test a hypothesis is available 
and applicable, as well as relevant to the ODD of interest. The scope of this data should be consistent with 
the scenario definition and ODD context from 5.1; otherwise, the data collection will need to be augmented 
to fill any gaps.  

▪ Execute the appropriate statistical hypothesis testing. 

▪ Statistical analysis: 

ꟷ Sample size requirements and statistical power analysis.  

ꟷ Understanding uncertainties, error propagation, and accuracy. 

▪ Utilize reference values for ADS performance thresholds.  

▪ If the result of testing is consistent with the desired accuracy and acceptable error, the results may be used 
as reference values for safety metrics in similar scenarios. If not, the ADS developer should acquire more 
data, test alternative hypotheses, and repeat 5.3.1 through 5.3.3. 

Exploratory Data Analysis (5.3.1) 

• Vehicle data collected in 5.2 should be filtered based on the scenario description. This step helps identify 
patterns and relationships in the data, which can guide the formulation of relevant hypotheses for testing. 

Hypothesis Testing (5.3.2) 

• AVSC recommends hypothesis testing and trend analyses on any driving dataset (including NDS) to establish 
data quality, accuracy, and an understanding of how errors can propagate during analysis. High-level steps can 
be followed by an ADS developer to define the hypothesis to be tested. 

Understanding Uncertainties, Error Propagation, and Accuracy (5.3.3.2) 

• Ensuring the accuracy of measurements and data points is crucial, especially when conducting perception-
related analyses and addressing measurement errors. 

• It is recommended to collect and compare data from multiple sensors or sensor modalities on a single platform, 
or independently collect measurements from other actors in the scene concurrently, to improve precision. 
Real-time kinetic (RTK) corrected satellite navigation systems are commonly used in research and testing to 
establish ground truth for localization. 

Utilize Reference Values for ADS Performance (5.3.4) 

• Steps 5.3.1 through 5.3.3 describe the process of testing hypotheses associated with the NDS data to derive 
threshold performance for ADS in specific scenarios. The testing results should be compared to desired 
accuracy and acceptable error levels. The results can also serve as benchmarks or criteria for evaluating safety 
metrics in context-relevant scenarios. 

• If the results do not meet the organization’s requirements, the ADS developer should collect more data or test 
alternative hypotheses, repeating the testing steps outlined in 5.3.1 through 5.3.3, while adjusting the 
hypotheses and modifying the parameters. This iterative process should continue until the desired accuracy 
and acceptable error levels are met for the scenario being evaluated, ultimately leading to establishing safe 
lateral distance reference values for passing pedestrians. 

Informing the Design Choice of ADS Developer Using NDS Analysis (5.4) 
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• Once reference values are determined for specific scenarios of interest, ADS developers should engage in 
iterative testing and analysis to further refine these values. This iterative process can enable ADS developers 
to make design choices that align with the performance goals set by the reference values. 
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APPENDIX B. Kinematic Graphs 

FIGURE B1 shows the flow diagram broken down by pedestrian movement direction for cases where lateral 
distance increases as SV passes the pedestrian. For hypothesis 3, it is observed that lateral distance between the 
SV and pedestrian is higher for cases when pedestrian is walking longitudinally away. However, due to low sample 
size, confidence in this observation is low.  

Case 1: Pedestrian Longitudinally Away 

• Mean: 2.8 m 

• Median: 2.4 m 

• SD: 0.83 

• SE: 0.17 

Case 2: Pedestrian Longitudinally Towards 

• Mean: 2.65 m 

• Median: 2.45 m 

• SD: 0.77 

• SE: 0.16 

Case 3: Pedestrian Relatively Stationery  

• Mean: 2.35 m 

• Median: 2.45 m 

• SD: 0.55 

• SE: 0.11 
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 FIGURE B1  Percentage of instances exceeding example reference values 
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APPENDIX C. Statistical Analysis 

C.1 Standard Statistical Measures 

The standard statistical measures relevant for:  

• Mean: Mean is the average of the given numbers and is calculated by dividing the sum of given numbers by 
the total number of numbers. Mean = (sum of all the observations/total number of observations). 

• Median: Middle value of the given list of data when arranged in an order. The arrangement of data or 
observations can be made either in ascending order or descending order. 

• Standard Deviation (SD): SD is a measure of variability. When we calculate the standard deviation of a sample 
of naturalistic driving data, we are using it as an estimate of the variability of the safety metric from which the 
sample was drawn. 

• Standard Error (SE): SE in the estimated mean is given by the sample standard deviation divided by the square 
root of the sample size: SE = SD/sqrt(n). 

• 95% Percentile: 95% of the time drivers maintain more than a certain distance from pedestrians while passing. 

• Statistical Power: The likelihood that a test will detect an effect of a certain size if there is one.  

▪ Type I error: Rejecting the null hypothesis when it is true. 

▪ Type II error: Not rejecting the null hypothesis when it is false. 

Power is the probability of avoiding a Type II error. The higher the statistical power of a test, the lower the risk 
of making a Type II error. 

• Significance Level (Alpha): The maximum risk of rejecting a true null hypothesis that you are willing to take. 

• Expected Effect Size: A standardized way of expressing the magnitude of the expected result of the study. 

C.2 Determining Sample Size 

• The 95% confidence interval (CI) corresponds to (approximately) 2x the error. 

• For example, imagine that we have a sample of 200 observations, with a mean of 3 feet lateral distance and 
standard deviation of 0.5 feet. Then our 95% CI of the population mean would be given by 3 feet ± 0.069 feet. 

• Standard deviation decides error. 

• We can also determine the sample size needed to reach a specific level of precision, given an estimate of the 
standard deviation. 

▪ If we again assume a standard deviation of 0.5, and we want the error to be at most 0.02 (at 95% CI), then 
we’d need at least 2401 observations. 

𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒 =  
𝑧2  𝑥   𝑝(1 − 𝑝)

𝑒2
 

where z = z-score; e = margin of error; and p = standard of deviation. 
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APPENDIX D. Error Propagation 

Monte Carlo is an effective alternate method to understand error propagation in the overall data analysis. An ADS 
developer can perform repeat calculations of a safety metric, each time varying the expected error randomly within 
their stated limits of precision. In the chosen scenario in this best practice, errors in measurement of lateral distance 
were assumed to be following:  

• 2 m error  

• 1 m error 

• 0.5 m error 

The number of repeated calculations performed for each error type was limited to 1000 (typically, higher number of 
iterations/repetitions will produce more accurate distribution). It was observed that the impact of measurement error 
is largely marginal and the distribution of mean lateral distance value increases with increase in error.  
 

 FIGURE D1  Distribution of mean lateral distance 

 


